# CREATING A HABITAT SUITABILITY INDEX TO PLAN FOR FUTURE SEAGRASS RESTORATION

# Bob Swett<sup>1</sup>, **Althea S. Hotlaing<sup>2</sup>**, Tom Frazer<sup>2</sup>, Rex Ellis<sup>3</sup>, Chuck Listowski<sup>4</sup>

<sup>1</sup>University of Florida School of Forest Resources and Conservation, Gainesville, FL, USA <sup>2</sup>University of Florida School of Natural Resources and Environment, Gainesville, FL, USA <sup>3</sup>University of Florida Department of Soil and Water Science, Gainesville, FL, USA <sup>4</sup>West Coast Inland Navigation District, Venice, FL USA

## Seagrass Ecosystem Services

- Sediment stabilization
- Water filtration
- Protection from storms
- Habitat and nursery for commercial and recreational fish species



#### Loss

 In the last two decades the documented loss of seagrass has been 3.3 million hectares or 20% of total documented coverage in the world

 Estimated 1,600 hectares needs to be restored SW Florida









- Direct loss of seagrass
  - Docks
  - Marinas
  - Navigation channels



- Increase in boating (particularly by inexperienced boaters)
- Indirect causes of loss
  - Eutrophication
  - Sedimentation
  - Changing salt/freshwater flow patterns
  - Climate change
  - Sea level rise

### Habitat Suitability Index

- Identify areas of the bay that have a suitable light environment for seagrass restoration
  - Throughout Bay (Space)
  - Seasonality (Time)
- Improve science behind restoration site selection



## Methods

- Stratified random sampling was used to identify 50 points in the bay
- Data collection occurred over 2 days every 3 weeks for a year
- Data recorded at each site
  - PAR (photosynthetically active radiation)
  - Water Depth
  - Salinity
  - Water Temperature
  - Dissolved Oxygen
  - Sampling Time



- PAR readings are paired, one on the surface and one 25 cm from the bottom
  - Between 10 am and 2 pm
  - 3 replicate measurements are made more than 30 sec apart at each site
- The percent of light available at the bottom is calculated for each reading and then the 3 percentages obtained for that sampling event are averaged
  LI-COR LI-1400 Data Logger
  Paired LI-COR LI-193SA Underwater Spherical Quantum Sensors



## Light attenuation coefficients (K<sub>d</sub>)

 Calculated from paired light readings using the Lambert-Beer Law:

 $I_{Z} = I_{O} e^{-(K_{d})z}$ 

- Where I<sub>Z</sub> is light measured at depth z, I<sub>O</sub> is light measured at the surface and K<sub>d</sub> is the light attenuation coefficient in units of m<sup>-1</sup>
- For each of the 50 sites the average K<sub>d</sub>, minimum K<sub>d</sub>, max K<sub>d</sub>, lower quartile, upper quartile, and 90<sup>th</sup> percentile was calculated.

# Kriging

- Geostatistics- uses statistical theory and software to analyze data with location coordinates
- Kriging allows you to predict values where no measurements have been taken
  - Measure the error of your prediction
- ArcGIS 10.1, Geostatistical Analyst
- Ordinary, simple, and universal kriging models were fit to the data
- Transformations, trend removals, anisotropy, and an iterative cross validation techniques was used to optimize model parameters
- Model with the smallest root mean square error was selected in each case







## Water Clarity

- Convert to raster
- Spatial Analyst Tools
  - Map Algebra
  - Raster Calculator
- Use depths from dense Lidar bathymetry layer
- Using Lambert Beers Law with known depths and predicted kd can predict light available at the bottom under average surface light conditions

## Bathymetry

- 816,218 depths
- Lidar
- Collected by USGS for South Florida Water Management District
- **2003**
- NASA EAARL lidar



#### Average Amount of Light (µmol photons) Available at the Bottom of Estero Bay























## Acknowledgements



#### SCHOOL OF NATURAL RESOURCES AND ENVIRONMENT















